AQUA

MAGNETICS

ELECTROMAGNETIC FLOWMETER INTEGRATION FOR ORIGINAL EQUIPMENT
MANUFACTURERS (OEM)

ARDUINO MKR SERIES (WiFi1010, WAN 1310, GSM 1400, NB 1500)
WITH SAMPLE CODE

7/9/2025

White Paper: Aqua Magnetics, LLC proprietary PCB with Electromagnetic Flow
Sensors and Arduino MKR Series User Layer

Executive Summary

This white paper presents a modular, extensible platform combining a custom-designed
printed circuit board (PCB) integrated with electromagnetic flow sensors and a user layer
based on the Arduino MKR series. This two-layer architecture provides a robust foundation
for developers to create tailored Internet of Things (loT) solutions for flow measurement
applications. The base layer ensures reliable sensor integration, while the Arduino MKR-
based user layer offers flexible output options, including analog-to-digital conversion
(ADC), I2C, Bluetooth, WiFi, LoRa, and cellular connectivity. This design empowers
developers to customize functionality for diverse use cases, such as industrial fluid
monitoring, environmental sensing, and smart agriculture. This document details the
system architecture, integration methods, connectivity options, and potential applications,
highlighting the platform’s extensibility and scalability.

Target Audience: Engineers, embedded systems developers, and system integrators with
expertise in the Arduino platform and associated communication protocols.

Introduction

Electromagnetic flow sensors are critical for precise measurement of conductive fluid flow,
widely used in industries like water management, chemical processing, and agriculture.
The custom PCB serves as a stable base layer, integrating these sensors with optimized
signal conditioning and power management. The user layer, built on the Arduino MKR
series, provides a familiar, open-source platform for developers to extend functionality
through various communication protocols. This white paper explores the technical
specifications, integration strategies, and developer extensibility of this hybrid platform,
enabling innovative loT solutions for flow monitoring.

System Architecture
The platform is designed with a two-layer architecture:
1. Base Layer (Custom PCB with Electromagnetic Flow Sensors):

o Purpose: Provides areliable, optimized interface for electromagnetic flow
sensors, handling signal acquisition, conditioning, and power delivery.

o Components:

= Electromagnetic flow sensors for measuring conductive fluid flow
based on Faraday’s Law of Electromagnetic Induction.

= Signal conditioning circuitry (e.g., amplifiers, filters) to process raw
sensor outputs.

= Power management circuits to support low-power operation and
compatibility with 3.3V Arduino MKR boards.

» Standardized interfaces (e.g., pin headers, Grove connectors) for
seamless connection to the user layer.

o Outputs: Analog (e.g., 4-20mA, 0-3.3V) and digital (e.g., pulse, 12C) sighals
compatible with the Arduino MKR series.

2. User Layer (Arduino MKR Series):

o Purpose: Enables developers to extend base layer functionality with
customizable processing and connectivity options.

o Hardware: Arduino MKR series boards (e.g., MKR WiFi 1010, MKR WAN 1310,
MKR GSM 1400, MKR NB 1500), featuring:

» Microcontroller: Microchip SAMD21 Cortex-MO0+ 32-bit low-power
ARM MCU.

= Operating Voltage: 3.3V, ensuring compatibility with the base layer.

= 1/0: Multiple analog/digital pins, [2C, SPI, UART, and 12-bit ADC.

= Connectivity: Bluetooth (BLE), WiFi, LoRa, and cellular (GSM/NB-loT).
» Eslov Connector: Simplifies sensor integration via 12C.

» Power Management: Supports Li-Po battery operation and low-power
modes.

o Extensibility: Open-source Arduino ecosystem with libraries, cloud
integration, and community support.

This layered approach separates core sensor functionality from user-defined processing
and communication, offering flexibility without compromising reliability.

Electromagnetic Flow Sensors

Electromagnetic flow sensors measure the flow rate of conductive liquids by generating a
voltage proportional to fluid velocity in a magnetic field. Key features include:

e Accuracy: High precision for conductive fluids (e.g., water, wastewater, chemical
solutions).

e Durability: No moving parts, reducing maintenance needs.

e Output Signals: Analog (4-20mA, 0-3.3V), pulse, or I2C, depending on the sensor
model.

e Applications: Water treatment, irrigation, industrial fluid management, and
environmental monitoring.

The custom PCB optimizes these sensors for integration with the Arduino MKR series,
ensuring compatibility and ease of use.

Integration and Output Options

The user layer, based on the Arduino MKR series, supports multiple output protocols,
allowing developers to tailor the platform to specific requirements. Below are the
integration methods for each output option.

1. Analog-to-Digital Conversion (ADC)

The base layer’s analog outputs (e.g., 4-20mA or 0-3.3V) connect directly to the MKR’s
analog input pins, which provide 12-bit ADC resolution.

e Connection: The custom PCB routes the sensor’s analog signal to an MKR analog
pin (e.g., A0). For 4-20mA signals, the PCB includes a shunt resistor or current-to-
voltage converter to produce a 0-3.3V signal.

e Programming: Use analogRead() in the Arduino IDE to acquire and process sensor
data. Calibration data from the sensor’s datasheet maps ADC values to flow rates.

o Example Use Case: Logging water flow data in a local storage system for industrial
process monitoring.

Sample Code:
int sensorPin = AQ;
void setup() {
Serial.begin(9600);
}
void loop() {
int rawValue = analogRead(sensorPin); // Read analog input

float voltage = rawValue * (3.3 / 4096.0); // Convert to voltage (12-bit ADC)

float flowRate = (voltage / 3.3) * 100.0; // Example scaling to flow rate
Serial.print("Flow Rate: ");
Serial.print(flowRate);
Serial.println(" L/min");
delay(1000);
}
2.12C Interface

The custom PCB supports 12C-compatible sensors, connecting to the MKR’s 12C bus (SDA
on pin 11, SCL on pin 12) or Eslov connector.

¢ Connection: The PCB routes SDA, SCL, VCC (3.3V), and GND to the MKR board.
Multiple I12C devices can share the bus using unique addresses.

e Programming: The Wire library facilitates 12C communication. Custom or third-
party libraries can simplify sensor-specific data handling.

o Example Use Case: Combining flow data with temperature and pressure sensors in
a water treatment system.

Sample Code:
#include <Wire.h>
#define SENSOR_ADDRESS 0x40 // Example 12C address
void setup() {
Wire.begin();
Serial.begin(9600);
}
void loop() {
Wire.beginTransmission(SENSOR_ADDRESS);
Wire.write(0x00); // Request flow data
Wire.endTransmission();

Wire.requestFrom(SENSOR_ADDRESS, 2);

if (Wire.available() >=2) {
int flowData = Wire.read() << 8 | Wire.read(); // Read 16-bit data
Serial.print("Flow Data: ");
Serial.println(flowData);
}
delay(1000);
}
3. Bluetooth (BLE)

MKR boards with BLE (e.g., MKR WiFi 1010) use the NINA-W10 module for wireless data
transmission to smartphones or other BLE devices.

e Connection: The base layer connects to the MKR via analog or 12C, and the MKR
transmits data over BLE.

e Programming: The ArduinoBLE library configures the MKR as a BLE peripheral, using
GATT services to share flow data.

o Example Use Case: Real-time flow monitoring in irrigation systems, with data sent
to a farmer’s mobile app.

Sample Code:
#include <ArduinoBLE.h>
BLEService flowService("19B10000-E8F2-537E-4F6C-D104768A1214");

BLEFloatCharacteristic flowCharacteristic("19B10001-E8F2-537E-4F6C-D104768A1214",
BLERead | BLENotify);

int sensorPin = AQ;

void setup() {
BLE.begin();
BLE.setLocalName("FlowSensor");
BLE.setAdvertisedService(flowService);

flowService.addCharacteristic(flowCharacteristic);

BLE.addService(flowService);
BLE.advertise();
}
void loop() {
BLEDevice central = BLE.central();
if (central) {
int rawValue = analogRead(sensorPin);
float flowRate = (rawValue / 4096.0) * 100.0; // Example scaling
flowCharacteristic.write(flowRate);

delay(1000);

}

}
4. WiFi (802.11 B,G,N 5GHz, 2.4 GHz)

WiFi-capable MKR boards (e.g., MKR WiFi 1010) enable cloud connectivity for real-time
data logging and remote monitoring.

e Connection: The base layer connects via analog or 12C, and the MKR sends data
over WiFi using the NINA-W10 module.

e Programming: The WiFiNINA library handles network connections, while
HTTPClient or MQTT libraries enable cloud integration.

o Example Use Case: Uploading flow data from a municipal water system to a cloud
dashboard.

Sample Code:

#include <WiFiNINA.h>

char ssid[] = "yourNetwork";
char pass[] = "yourPassword";
int sensorPin = AQ;

WiFiClient client;

void setup() {
WiFi.begin(ssid, pass);
while (WiFi.status() = WL_CONNECTED) {
delay(1000);

}
Serial.begin(9600);

}
void loop() {
int rawValue = analogRead(sensorPin);
float flowRate = (rawValue / 4096.0) * 100.0; // Example scaling
if (client.connect("example.com", 80)){
client.print("GET /update?flow=");
client.print(flowRate);
client.printin(" HTTP/1.1");
client.println();
client.stop();

}
delay(60000);

}
5. LoRa (433/868/915 MHz)

The MKR WAN 1310 supports long-range, low-power LoRa communication, ideal for
remote applications.

¢ Connection: The base layer connects via analog or I12C, and the MKR transmits data
to a LoRa gateway or network (e.g., The Things Network).

e Programming: The MKRWAN library manages LoRaWAN communication,
optimizing for low power.

e Example Use Case: Monitoring water flow in remote agricultural fields via
LoRaWAN.

Sample Code:

#include <MKRWAN.h>

LoRaModem modem;

int sensorPin = AQ;

void setup() {
modem.begin(EU868); // Set to 915E6 for North America
modem.joinOTAA("appEUI", "appKey"); // Replace with your LoRaWAN credentials
Serial.begin(9600);

}

void loop() {
int rawValue = analogRead(sensorPin);
int scaledValue = rawValue / 4; // Scale to fit in 1 byte
modem.beginPacket();
modem.write(scaledValue);
modem.endPacket(false);
delay(60000); // Send every minute

}

6. Cellular

The MKR GSM 1400 and MKR NB 1500 provide cellular connectivity (GSM or NB-loT),
enabling robust, wide-area communication for remote monitoring.

e Connection: The base layer connects to the MKR via analog or 12C, and the MKR

transmits data over a cellular network using the onboard modem.

e Programming: The MKRGSM or MKRNB library manages cellular connections,
allowing data transmission to cloud servers via HTTP or MQTT.

« Example Use Case: Remote monitoring of water flow in a city’s water distribution
network, with data sent to a central server via NB-loT.

Sample Code:
#include <MKRNB.h>
NB nbAccess;
NBClient client;
int sensorPin = AQ;
char apn[] = "yourAPN"; // Replace with your cellular provider's APN
void setup() {
Serial.begin(9600);
while (InbAccess.begin(apn)) {
Serial.println("Connecting to cellular network...");
delay(1000);
}
}
void loop() {
int rawValue = analogRead(sensorPin);
float flowRate = (rawValue / 4096.0) * 100.0; // Example scaling
if (client.connect("example.com", 80)){
client.print("GET /update?flow=");
client.print(flowRate);
client.printin(" HTTP/1.1");
client.println("Host: example.com");
client.println();

client.stop();

}

10

delay(60000); // Send every minute

}

Developer Extensibility

The Arduino MKR-based user layer enables developers to customize and extend the
platform’s capabilities:

Custom Libraries: Developers can create or leverage Arduino libraries to interface
with specific electromagnetic flow sensors, simplifying data processing and
calibration.

Grove Connectors: The custom PCB may include Grove connectors for easy
integration of additional sensors, enabling multi-sensor applications.

Cloud Integration: The Arduino loT Cloud or third-party platforms (e.g., AWS,
Firebase) provide plug-and-play solutions for data visualization and device
management.

Low-Power Optimization: The MKR series supports sleep modes, allowing battery-
powered systems to operate for extended periods.

Custom Protocols: Developers can implement proprietary communication
protocols over 12C, SPI, or UART to support unique sensor interfaces.

Use Cases

The platform supports a wide range of applications:

Smart Agriculture: Monitor irrigation flow and soil moisture, transmitting data via
LoRa or cellular for precision farming.

Water/ Wastewater Management: Track flow rates in municipal water systems,
using WiFi or cellular for cloud-based analytics.

Industrial Automation: Measure fluid flow in chemical plants, integrating with PLC
systems via the lono MKR.

Environmental Monitoring: Deploy battery-powered flow sensors in remote rivers
or wastewater systems, using LoRaWAN or cellular for data transmission.

Challenges and Considerations

11

« Voltage Compatibility: The MKR series operates at 3.3V, requiring the custom PCB
to condition sensor outputs to avoid damage.

e Power Consumption: Optimize sensor sampling and sleep modes for battery-
powered applications to extend operational life.

e Calibration: Electromagnetic flow sensors require calibration, which may involve
custom code or lookup tables.

e Network Security: Implement secure protocols (e.g., TLS for WiFi/cellular, ECC508
crypto chip) to protect data during transmission.

Conclusion

The combination of a custom PCB with electromagnetic flow sensors and an Arduino MKR-
based user layer offers a powerful, extensible platform for loT flow measurement solutions.
The base layer ensures reliable sensor performance, while the user layer provides flexible
output options (ADC, 12C, Bluetooth, WiFi, LoRa, cellular) for tailored applications. With
the Arduino ecosystem’s open-source tools, low-power capabilities, and robust
connectivity, developers can create scalable, efficient solutions for smart agriculture,
water management, industrial automation, and environmental monitoring.

References
e Arduino Official Documentation: www.arduino.cc
e Arduino MKR Series Product Pages: store.arduino.cc
o LoRaWAN Sensor Data Tutorial: docs.arduino.cc

e MKR GSM/NB Libraries: github.com/arduino-libraries

12

http://www.arduino.cc/

MKR 1010 WIFI PINOUT GUIDE

ATSAMD21G18A-48QFN

SRAM 32 kB
FLASH 256 kB

DC Current per I/0 Pin:

max. 7 mA

min
0.7 Ah .
PAO3 AREF |-
pac2 | [pAco | [AoDis]
scs poal [PBo2 | [INTR21 | [A1D16]----
scs p1a|[pBo3 | [iNT3] | [A2 D17 -
SCO POa| [PAO4 | |[PWM | [A3 D18 |-
scop1al [Paos | [pwm | [A2D19]-—
5o P23 [PAOs [A5 D20]----
sco p3al [PA07 A6 D21]
sc3po | [paz2 | [inTie] | [po
scap1 |[pa23 | [inTiz) | D2
sco P2 | [pat0 [p2
[scop3 | [pa12 [o3
[pe10 | [inT201] [D2

PB11

INT[11]] [DS .

GND
PAO8

2019-02-08
Martin Henschke

www.dr-henschke.de/Zeitwaage.html

PA09

PA21

- exact 5V SCn Pi
-
»

D14 [1x PB22_|[sCs paa
o1 R [pe23_][scsp3a
o2 | B [sec| [PAos_|[scor1
[o1r_ | [EEEE [soA”] [Pace_] [scopo
[p10 [Miso_| [pa19_][sc1p3

iy | [Sek] [pat7_| [scaps
[inTror | [Mosi_] [pate_] [scapo
[INTIS] PA21_|[sc3paa
[inTray | PA20 | [sc3 p2a|

Power

Analog

Serial

Digital I/0

Dig. 1/0 + PWM
Port

LED

Interrupt

SERCOMn PADIi], a=alt

13

MKR 1400 GSM PINOUT GUIDE

Li-Po 3.7 V

I BB
[Fhos [EXN 015y
Cher T8 07 4

Battery
Charger LED

Power

PABS
PAB9

5

LED_BUILTIN

+3V3

+
=<
+
<

D14 | PB22 |
013 | PB23 |
<10 | Pa1o |
Do | pal7 |
L cos | PG |
07 | pa2i
-0 | PA20 }

14

MKR NB 1500 PINOUT GUIDE

Li-Po 3.7 V

s

Battery
Charger LED

PAGS
PAGS

+5V

LED_BUILTIN

+5V

-«

™ o1s_ | pazz
GOEG
C 517 [Paoe |
51 [Pats |
G A
T
G
ETH LD

15

